An examination of quinone toxicity using the yeast Saccharomyces cerevisiae model system.
نویسندگان
چکیده
The toxicity of quinones is generally thought to occur by two mechanisms: the formation of covalent bonds with biological molecules by Michael addition chemistry and the catalytic reduction of oxygen to superoxide and other reactive oxygen species (ROS) (redox cycling). In an effort to distinguish between these general mechanisms of toxicity, we have examined the toxicity of five quinones to yeast cells as measured by their ability to reduce growth rate. Yeast cells can grow in the presence and absence of oxygen and this feature was used to evaluate the role of redox cycling in the toxicity of each quinone. Furthermore, yeast mutants deficient in superoxide dismutase (SOD) activity were used to assess the role of this antioxidant enzyme in protecting cells against quinone-induced reactive oxygen toxicity. The effects of different quinones under different conditions of exposure were compared using IC50 values (the concentration of quinone required to inhibit growth rate by 50%). For the most part, the results are consistent with the chemical properties of each quinone with the exception of 9,10-phenanthrenequinone (9,10-PQ). This quinone, which is not an electrophile, exhibited an unexpected toxicity under anaerobic conditions. Further examination revealed a potent induction of cell viability loss which poorly correlated with decreases in the GSH/2GSSG ratio but highly correlated (r2 > 0.7) with inhibition of the enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH), suggesting disruption of glycolysis by this quinone. Together, these observations suggest an unexpected oxygen-independent mechanism in the toxicity of 9,10-phenanthrenequinone.
منابع مشابه
Investigation of blood serum enzymes and antioxidant system of liver in grey mullet ,Mugil cephalus Linnaeus 1758, fed with different levels of Saccharomyces cerevisiae yeast
The potential use of dietary probiotics to enhance the immunity and health of aquatic animals has recently attracted intensive attention. The purpose of this study was to investigate the effect of different levels of Saccharomyces cerevisiae yeast on blood serum enzymes (aspartate aminotransferase (AST), alanine aminotransferase (ALT) and alkaline phosphatase (ALP)) and antioxidant systems (S...
متن کاملKinetics Studies Impact of Initial pH and Addition of Yeast Saccharomyces cerevisiae on Biogas Production from Tofu Wastewater in Indonesia
The purpose of this work was to study the effect of initial pH and yeast Saccharomyces Cerevisiae on biogas production from tofu wastewater (TW). The initial pH was varied in ranging of 5 – 9 in substrate without yeast (T5-T9) and with yeast (TY5-TY9). The results showed that optimum initial pH was 8. The maximum biogas was resulted in T8 (275 mL) and TY8 (421 mL). Yeast addition increased tota...
متن کاملEffect of Processed Lemon Pulp With Saccharomyces Cerevisiae Yeast on Protein and Energy Metabolism in Raini Goats
The aim of present study is investigating effect of treated lemon pulp by Saccharomyces cerevisiae yeast on protein and energy metabolism in goats was fed with this product. In this experiment 8 goats from raini breed were used for 21 days period; 16 days for adaptation and 5 days for sampling, to investigate the effect of processing lemon pulp by Saccharomyces cerevisiae yeas...
متن کاملGreen synthesis of silver nanoparticles: Another honor for the yeast model Saccharomyces cerevisiae
Background and Purpose: Microorganism-based synthesis of nanostructures has recently been noted as a green method for the sustainable development of nanotechnology. Nowadays, there have been numerous studies on the emerging resistant pathogenic bacteria and fungal isolates, the probable inability of bacteria and fungi to develop resistance against silver nanoparticles’ (SNPs) antibacte...
متن کاملEffect of dietary supplementation with zinc enriched yeast (Saccharomyces cerevisiae) on immunity of rainbow trout (Oncorhynchus mykiss)
Zinc (Zn) is an essential trace element in all living organisms, and the first eukaryotic Zn uptake transporter was discovered in the yeast, Saccharomyces cerevisiae. Zinc-enriched yeast is a currently available Zn supplement. The purpose of the investigation was to compare and evaluate the effect of Zn enriched yeast in rainbow trout. The fish (mean body weight 10 ± 0.5 g) were fed a commercia...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Toxicology
دوره 201 1-3 شماره
صفحات -
تاریخ انتشار 2004